Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses.

نویسندگان

  • J M Oldham
  • J A Martyn
  • M Sharma
  • F Jeanplong
  • R Kambadur
  • J J Bass
چکیده

Excessive muscling in double-muscled cattle arises from mutations in the myostatin gene, but the role of myostatin in normal muscle development is unclear. The aim of this study was to measure the temporal relationship of myostatin and myogenic regulatory factors during muscle development in normal (NM)- and double-muscled (DM) cattle to determine the timing and possible targets of myostatin action in vivo. Myostatin mRNA peaked at the onset of secondary fiber formation (P < 0.001) and was greater in DM (P < 0.001) than in NM. MyoD expression was also elevated throughout primary and secondary fiber formation (P < 0.001) and greater in DM (P < 0.05). Expression of myogenin peaked later than MyoD (P < 0.05); however, it did not differ between NM and DM. These data show that myostatin and MyoD increase coincidentally during formation of muscle fibers, indicating a coordinated role in the terminal differentiation and/or fusion of myoblasts. Myostatin mRNA is also consistently higher in DM than NM, suggesting that a feedback loop of regulation is also disrupted in the myostatin-deficient condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myostatin preferentially down-regulates the expression of fast 2x myosin heavy chain in cattle

Myostatin is involved in an inhibitor of muscular growth and differentiation. Myoblasts derived from double-muscled Japanese shorthorn cattle (DM myoblasts) with absence of functional myostatin had higher abilities to proliferate and differentiate than myoblasts derived from normal-muscled cattle (NM myoblasts). In DM myoblasts, mRNA expressions of fetal myosin heavy chain (MyHC) in growth medi...

متن کامل

Characterization of gene expression in double-muscled and normal-muscled bovine embryos.

Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth. Cattle with mutations that inactivate myostatin exhibit a remarkable increase in mass of skeletal muscle called double muscling that is accompanied by an equally remarkable decrease in carcass fat. Although a mouse knockout model has been created which results in mice with ...

متن کامل

Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle.

A visibly distinct muscular hypertrophy (mh), commonly known as double muscling, occurs with high frequency in the Belgian Blue and Piedmontese cattle breeds. The autosomal recessive mh locus causing double-muscling condition in these cattle maps to bovine chromosome 2 within the same interval as myostatin, a member of the TGF-beta superfamily of genes. Because targeted disruption of myostatin ...

متن کامل

Investigation of GDF8 Gene Promoter in Iranian Sheep

Myostatin is a growth factor belonging to the TGFß superfamily. TGFß growth factors are active in the regulation of embryonic development and in tissue homeostasis in adults. Myostatin is a growth factor controlling proliferation of myoblasts in embryonic development. Mutations in coding sequences of the bovine myostatin (GDF8) gene lead to muscle hyperplasia suggesting its inhibitory function ...

متن کامل

Myostatin (GDF-8) as a potential quantitative trait locus in swine

Introduction Myostatin (GDF-8) is a member of the TGF-β superfamily of growth factors which is expressed predominantly in skeletal muscle. Myostatin is a purported negative regulator of muscle development (McPherron et al., 1997). Myostatin knock-out mice (mice which have the myostatin gene specifically inactivated) have individual muscles which can weigh 2 to 3 times more than the same muscles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 280 5  شماره 

صفحات  -

تاریخ انتشار 2001